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Supplementary Materials: 
Recruitment and Diagnostics 

Children were recruited from families who volunteered in response to mass mailings in 
the community. Their diagnostic grouping was carefully evaluated in best-estimate, multi-stage 
case finding procedure that included parent clinical interview using the Kiddie Schedule for 
Affective Disorders and Schizophrenia (K-SADS-E) (Orvaschel, Lewinsohn, & Seeley, 1995) 
and parent and teacher standardized rating scales including the Conners’ Rating Scale, 3rd 
edition (Conners, 2008), ADHD Rating Scale (DuPaul, Power, Anastopoulos, & Reid, 1998), 
and Strengths and Difficulties Questionnaire (Goodman, 1997). Intelligence was estimated with 
a three-subtest short form (Block Design, Vocabulary, and Information) of the Wechsler 
Intelligence Scale for Children, 4th edition (Wechsler, 2003), and academic achievement with 
word reading and numerical operations subtests of the Wechsler Individual Achievement test. A 
best-estimate diagnostic team reviewed this information, as well as IQ, academic scores, and 
observer notes, and independently assigned a diagnosis. Their agreement on ADHD/non-ADHD 
status was acceptable (k > 0.85 for all diagnoses occurring at base rate > 5% in the sample, 
including ADHD and ADHD subtype). Disagreements that could not be resolved by discussion 
would lead to exclusion, but in this study consensus could be achieved in each case, thus no 
subject had to be excluded for this reason. 

Children were excluded if they did not meet criteria for ADHD or non-ADHD groups; if 
they had evidence of tic disorder, psychotic disorder, bipolar disorder, autism spectrum disorder, 
or mental retardation; if parent reported history of neurological illness, chronic medical 
problems, sensorimotor handicap, or significant head trauma (with loss of consciousness); or if 
they were taking psychotropic medications other than psychostimulants. Children were also 
excluded if they presented metal in their bodies, which could contra-indicate MRI acquisition or 
cause imaging artifacts (e.g. dental braces, intracranial aneurysm clips). Additional exclusion 
criteria for control children were: presence of conduct disorder, current major depressive 
episode, or ADHD. Only right-handed children were included in the present study. Children 
prescribed psychostimulant medications were scanned after a minimum washout period of five 
half-lives (i.e. 24–48 h depending on the preparation). 

The Human Investigation Review Board at Oregon Health & Science University 
approved the research. Written informed consent was obtained from respective parents and 
written assent was obtained from all child participants. 

 
Behavioral testing 
Continuous performance task 

An IP-CPT was used because it is less vulnerable to the ceiling effects that interfere with 
calculation of signal detection parameters in a less difficult CPT. The version used here was 
modeled on tasks used successfully in other studies of ADHD (Curko Kera, Marks, Berwid, 
Snatra, & Halperin, 2004). In the task, children viewed a series of four-digit numbers displayed 
one at a time in pseudo-random order to ensure unpredictability while achieving the required 
ratio of trial types. A total of 11 different 4-digit were used. When two identical numbers appear 
back-to-back, the child pushed the response button. We used a 200 ms display followed by a 
1500 ms dark screen, for a total time per trial of 1700 ms. Target frequency was 20%. Another 
20% of trials were “catch” trials in which the back-to-back numbers differed by only one digit, 
creating a difficult discrimination and 60% of trials were “stim” or “non-targets” in which 



	

	

subsequent numbers differed by multiple digits, making them comparatively easy 
discriminations. With a total of 300 stimuli, the task required about 10 minutes to complete. For 
both the easy (“stim”) and difficult (“catch”) trials, d’, an index of perceptual 
sensitivity(Stanislaw & Todorov, 1999) (i.e., the ability to discriminate between target and noise) 
and was calculated as our main index of vigilance (Cornblatt, Risch, Faris, Friedman, & 
Erlenmeyer-Kimling, 1988; Halperin, Sharma, Greenblatt, & Schwartz, 1991). A higher d’ score 
indicates better performance and a greater sensitivity in distinguishing the target from the non-
targets. D’ is typically interpreted as an index of vigilance(Sergeant, Oosterlaan, & van der 
Meere, 1999) and is commonly impaired in studies of ADHD(Huang-Pollock, Karalunas, Tam, 
& Moore, 2012; Tucha et al., 2009; Willcutt, Doyle, Nigg, Faraone, & Pennington, 2005).  

Mathematically, d’ = ABS(HR) – ABS(FAR) and lnβ = LN[ORD(HR)/ORD(FAR)]. 
Where ABS(p) and ORD(p) = the abscissa and ordinates of the hit rate (HR) and false alarm rate 
(FAR) on a standardized normal distribution. For cases in which HR = 1 or FAR = 0, abscissa 
and ordinates are undefined so that d’ and β cannot be calculated. Therefore, following Davies & 
Parasuraman (Parasuraman & Davies, 1977), when HR = 1 or FAR = 0, HR was recalculated as 
2-1/# targets and FAR recalculated as 1-2-1/#non-targets in that event. 

To ensure data quality we required the following filters. First, each block was considered 
valid if children had no more than 50% false alarms on the “easy” non-target trials in that block. 
Next average scores were computed for hit rate, omissions, false alarms on “easy” non-target 
trials, and false alarms on “difficult” or “catch” trials using all of the valid blocks. To be 
included in final analyses, children were required to have an average of >10% correct hits and 
<90% false alarms on “easy” non-target trials. 
 
MRI data acquisition: 
OHSU cohort: Participants were scanned on a Siemens Tim Trio 3.0 Tesla MRI scanner at the 
Advanced Imaging Research Center at OHSU. Structural images were obtained using a T1-
weighted MP-RAGE sequence (TR=2.3𝑠, TE=3.58𝑚𝑠, flip angle = 10°, TI = 900𝑚𝑠, voxel size 
= 1mm3, 160 sagittal slices). A T2-weighted sequences was also acquired (TR = 3.2𝑠, TE = 
497𝑚𝑠, voxel size = 1𝑚𝑚, slices = 160) as well as magnitude and phase field maps to correct for 
geometric distortions due to susceptibility artifact. Resting-state functional BOLD images were 
acquired using a gradient-echo, echo-planar sequence (TR = 2500 𝑚𝑠, TE = 30 𝑚𝑠; FOV = 240 
mm; flip angle =  90°; 3.75x3.75x3.8 𝑚𝑚). Full brain coverage was obtained with 36 contiguous 
interleaved 3.8 𝑚𝑚 axial slices acquired parallel to the plane transecting the anterior and 
posterior commissure. 
 
Human connectome project (HCP) cohort: Participants for the HCP related analyses were 
obtained from the HCP consortium “500 Subject release”. These data are publically available on 
the human connectome project database (https://db.humanconnectome.org). Of these subjects we 
included 61 healthy control subjects (22-35 years of age, 26 males) which were selected based on 
their optimal data quality and low motion (at least 800 frames remained after motion scrubbing). 
All subjects included were unrelated. HCP data was acquired on a 3T Siemens Skyra optimized 
to achieve 100 mT/m gradient strength. All the data was corrected to account for the non-
linearities associated with the high gradient and the displacement of the isocenter in this 
optimized system. For further details see the HCP 500 Subjects + MEG2 Data Release: 
Reference Manual (WU-Minn, 2014) and (Glasser et al., 2013). Two separate T1-weighted 
images were acquired and averaged, with a TR=2400 ms, TE=2.14 ms, TI = 1000 ms, FA = 8°, 



	

	

and ES = 7.6 ms. Two T2-weighted images were acquired and averaged with a TR=3200 ms, 
TE=565 ms. T1-weighted and T2-weighted images were acquired with a voxel resolution of 0.7 
mm (isotropic). Resting state BOLD data were acquired using a gradient echo echo planar 
imaging sequences with 2mm3 voxels, TR=720ms, TE = 33.1ms, and a multiband acceleration 
factor of 8. The HCP dataset included two sequential days of scanning in which two resting state 
scans were acquired on each day. Each of these EPI scans were acquired in both the left to right 
and right to left acquisition direction. In order to maximize the amount of data, all four datasets, 
both session (day 1 and day 2) and each acquisition direction, were processed as described above 
and timecourses were concatenated before construction of correlation matrices.  

MRI data processing 
OHSU sample: Data were processed using the pipelines from the Human Connectome Project 
(Glasser et al., 2013), which include the use of FSL (Jenkinson, Beckmann, Behrens, Woolrich, 
& Smith, 2012; Smith et al., 2004) and FreeSurfer tools (Desikan et al., 2006; Fischl & Dale, 
2000; Fischl, Sereno, & Dale, 1999). Briefly, gradient distortion corrected T1-weighted and T2-
weighted volumes were first aligned to the MNI’s AC-PC axis and then non-linearly normalized 
to the MNI atlas. Later, the T1w and T2w volumes are re-registered using boundary based 
registration (Greve & Fischl, 2009) to improve alignment. Then, the brain is segmented using 
recon-all from FreeSurfer. Segmentations are improved by using the enhanced white matter-pial 
surface contrast of the T2-weighted sequence. The BOLD data is corrected for field distortions 
(using FSL’s TOPUP) and processed by doing a preliminary 6 degrees of freedom linear 
registration to the first frame. After this initial alignment, the average frame is calculated and 
used as final reference. Next, the BOLD data is registered to this final reference and to the T1-
weighted volume, all in one single step, by concatenating all the individual registrations into a 
single registration. Strict motion correction procedures were applied to resting state functional 
maps and volumes with a framewise displacement (FD) (Fair et al., 2012; Power, Barnes, 
Snyder, Schlaggar, & Petersen, 2012) which exceeded .2mm were excluded and only subjects 
with greater than 4 minutes of remaining motion free data were included in this analysis. In order 
to insure that the same amount of data was used in all subjects, 73 motion free frames were 
randomly selected to construct each scans covariance matrix.  
 
Surface registration. The cortical ribbon defined by the structural T1-weighted and T2-weighted 
volumes is used to define a high resolution mesh which will be used for surface registration of 
the BOLD data. This cortical ribbon is also used to quantify the partial contribution of each 
voxel in the BOLD data in surface registration. Timecourses in the cortical mesh are calculated 
by obtaining the weighted average of the voxels neighboring each vertex within the grid, where 
the weights are given by the average number of voxels wholly or partially within the cortical 
ribbon. Voxels with high coefficient of variation, indicating difficulty with tissue assignment or 
containing large blood vessels, are excluded. Next, the resulting timecourses in this mesh are 
downsampled into a standard space of anchor points (grayordinates), which were defined in the 
brain atlas and mapped uniquely to each participant’s brain after smoothing them with a 2mm 
full-width-half-max Gaussian filter. Subcortical regions are treated and registered as volumes. 
Two thirds of the grayordinates are vertices located in the cortical ribbon while the remaining 
grayordinates are subcortical voxels.  
 



	

	

Nuisance regression. Additional preprocessing consists of regressing out the grey matter, 
ventricle and white matter average signal, and the movement between frames from the six image 
alignment parameters 𝑥, 𝑦, 𝑧, 𝜃' , 𝜃(, and 𝜃)  on the actual and the previous TR and their 
squares, which correspond to the Volterra series expansion of motion (Friston, Williams, 
Howard, Frackowiak, & Turner, 1996; Power et al., 2014, 2012). The regression’s coefficients 
(beta weights) are calculated solely based on frames with low movement, but regression is 
calculated considering all the frames to preserve temporal order in the data for filtering in the 
time domain. Next, timecourses are filtered using a first order Butterworth band pass filter to 
preserve frequencies between 9 and 80 mHz.  
 
HCP sample: For HCP subjects, BOLD data was denoised using ICA-FIX a tool which uses 
independent Component Analysis (ICA) to account for nuisance and covariates. ICA-FIX 
automatically removes artifactual or “bad” components. Briefly, each voxel’s timecourses from 
25 HCP subjects were decomposed into 229 spatial components. Of these, on average 24 
components were hand-classified as “good” and the remainder as “bad”. Next, a classifier was 
trained to identify “good” and “bad” components. Once the classifier was optimized (by leave-
one-subject-out cross validation), the resulting classifier was used to identify the “bad” 
components from each participant. Such components were removed by regressing the “bad” 
components (timecourses) out from the timecourses on each grayordinate. In addition to ICA-
FIX BOLD data was further denoised by regressing the whole brain signal. All other processing 
techniques were identical between the HCP and OHSU cohorts. 
 
Motion and whole brain regression 

This study is the first to examine negative connectivity patterns in ADHD after recent 
realizations by the field of the critical importance of motion correction (Grayson et al., 2016; 
Power et al., 2013, 2012; T. Satterthwaite et al., 2012). In order to ensure that our findings were 
not driven by differences in head motion we use multiple preprocessing techniques aimed at 
eliminating motion effects, including motion regression, motion censoring based on frame 
displacement, and whole brain regression. Here, we use a motion cut off of FD < .2mm in order 
to maximize the amount of quality data, while excluding motion related artifacts in our sample. 
While motion is always a concern, particularly in hyperkinetic and developmental samples, the 
likelihood of our results being related to motion artifacts low given that the final sample was 
matched on average frame displacement.  

As an additional quality control measure whole brain regression (WBR) was used. 
Outside of unique data collection circumstances, WBR has repeatedly been shown to reduce 
noise unlikely related to neural activity, remove cardiac and respiratory signals known to 
correlate with the global signal and reduce motion artifact (Grayson et al., 2016; K Murphy & 
Fox, 2016; Power et al., 2012; T. D. Satterthwaite et al., 2013; Schölvinck, Maier, Ye, Duyn, & 
Leopold, 2010). With this said, we recognize that there is still controversy regarding the use of 
WBR. While prior work has highlighted the benefits of this procedure (Grayson et al., 2016; 
Keller et al., 2013; Miranda-Domínguez et al., 2014; Power et al., 2014), there are others who 
disagree (Gotts et al., 2013). On the one hand it is clear that WBR reduces noise (Grayson et al., 
2016; Power et al., 2012; T. D. Satterthwaite et al., 2013) and is one of the only methods which 
are able to correct for non-spatially dependent artifacts. Further, after WBR the structure of the 
negatively correlated  networks are maintained in their spatial distribution and cross subject 
consistency (Fox, Zhang, Snyder, & Raichle, 2009). On the other hand, WBR can artificially 



	

	

induce some low probability negative correlations (Kevin Murphy, Birn, Handwerker, Jones, & 
Bandettini, 2009). However, in our prior work we have confirmed that the rank order of the 
strongest negative and positive correlations does not overtly change with and without the use of 
WBR (Miranda-Domínguez et al., 2014). In addition, the strongest negative correlations have 
been validated with non-MR measures of brain activity (Keller et al., 2013). The current study 
examines only the strongest negative correlations which are of the highest probability of being 
the true and biological relevant negative correlations which are not artificially induced by the use 
of WBR. In total, our preprocessing and analyses ensure that the cleanest motion free data was 
used to calculate connectivity on only the most robust negative connections between networks.  

 
Secondary motion censoring methods 

It has recently become clear that links between connectivity and behavior may be 
influenced by subject head motion even after stringent motion correction and censoring methods 
(Siegel et al., 2016). Therefore, we ensured that 1) connectivity patterns were not related to 
subject head motion, and 2) that brain behavior correlations were not related to motion. In brief, 
the first step involved ensuring the correlation between average negative connectivity was not 
related to subjects head motion measured by mean remaining FD. Next, we calculated the motion 
influence on the functional connectivity-behavior relationship as described in full elsewhere 
(Siegel et al., 2016). In brief, this required that we ensure there was no correlation between the 
mean FD-connectivity relationship and the observed brain-behavior relationships. This was 
calculated as a “correlation of correlations”, that is the correlation between the correlation of 
mean FD and all connections within the network mask, and the CPT-connectivity correlation. In 
short, we found modest relationships between head motion and these two parameters (see 
supplementary results) and so in order to ensure that our results were not influenced by subject 
motion our results were tested in multiple ways, step 1) With and without the removal of 30 
scans whose behavior and or connectivity patterns were related to head motion (mean FD) and 2) 
with and without mean FD as a covariate in the linear mixed effects models. 

 
Supplementary Results: 
Main effects without secondary motion correction 

Our main analyses removed 30 scans whose connectivity patterns were driving a modest 
relationship between head motion and functional connectivity, as well as been head motion and 
subject age. After their removal our analyses passed motion criteria defined by Siegel and 
colleagues (Siegel et al., 2016), see figure S1 for these scans. Without the exclusion of these 
subjects our effects were conserved. ADHD subjects had less negative connectivity (p = .005), 
and the age relationship (p = .015), and sex effect (p = .021) remained significant. The group by 
age effect remained a trend (p = .09). CPT relationships were also significant with these subjects 
included for the d-prime difficult (t=-2.86, p = .004), CPT easy condition (t = -3.21, p = .001) 
and the relationship remained stronger in ADHD subjects than controls with a significant 
interaction between d-prime difficult and group status (p = .035).  

 
Connection level effects 

In order to examine whether age, group, and sex effects were seen at the level of 
individual connections between the task positive and negative networks a similar set of analyses 
computed a linear mixed effects model for each connection between networks.  Of the 250 
connections between networks, 24 connections were significantly under-connected in ADHD 



	

	

(FDR corrected p < .05), 15 connections showed significant age effects (greater negative 
connectivity and increased age), and 20 connections were more negatively connected in females. 
No effects (FDR corrected) were in the opposite direction (i.e. ADHD greater negative 
connectivity than controls). Each of these connections can be seen in Supplementary Table 4.  
 
Supplementary Figures 

 
Supplementary Figure 1.  Scans removed from the main analyses do to a relationship between 
motion and negative connectivity. Average negative connectivity between networks is shown on 
the x axis and scan remaining frame displacement (FD) is shown on the y axis. 30 scans were 
removed (red) which contributed to the motion, connectivity relationship. With the inclusion of 
the scans in red the FD-connectivity correlation (r = .13, p < .0001), without the scans included (r 
= .06, p = .10). Main effects (ie, group, age, sex effects, and CPT relationships) are conserved 
with the inclusion of these scans. The scan with a negative connectivity value below -1 (fischers 
transformed correlations) was not removed in the main analyses because it did not influence this 
connectivity-motion relationship, however, the exclusion of this data point (this scan was an 
ADHD subject) does not alter the significance of any results.  
 
Supplementary Tables 



	

	

 
Supplementary Table 1. Number of ROIs per task positive – task negative network mask. 
Column 1. The number of ROIs in each network, as defined by Gordon et al.(Gordon et al., 
2016). Column 2. Number of significantly negative connections (average R < -.35) between task 
negative (default) and task positive network regions, defined in an independent set of adults. 
Note the majority of negative connections are from the default to the cingulopercular network. 
Column 3. Number of significantly negative connections between the default network and all 
other brain regions. Note that only two additional regions which are outside the task positive 
network (visual and supplementary motor) are now included in this network mask.  
 
 

 
Supplementary Table 2. Alternative thresholds for defining the network mask. An independent 
sample of adults were used to define the connections which were most negatively correlated with 
the default mode. Main analyses considered connections from the default mode which were 
below R < -.35, and excluded 30 scans whose connectivity was correlated with motion (mean 
FD). Alternative analyses are shown at various thresholds, with and without the removal of 30 
scans.  
 

1)	𝑌 = 𝛽0 + 𝛽2	𝑥	𝐹𝐷 +	𝛽5	𝑥	𝑎𝑔𝑒 + 𝛽9	𝑥	𝑔𝑟𝑜𝑢𝑝 +	𝛽>	𝑥	𝑔𝑒𝑛𝑑𝑒𝑟 + 	𝜀	



	

	

2)	𝑌 = 𝛽0 + 𝛽2	𝑥	𝐹𝐷 +	𝛽5	𝑥	𝑎𝑔𝑒 + 𝛽9	𝑥	𝑔𝑟𝑜𝑢𝑝 +	𝛽>	𝑥	𝑔𝑒𝑛𝑑𝑒𝑟 + 	𝛽C	𝑥	 𝑔𝑟𝑜𝑢𝑝	𝑥	𝑎𝑔𝑒 + 	𝜀	
3)	𝑌 = 𝛽0 + 𝛽2	𝑥	𝐹𝐷 +	𝛽5	𝑥	𝑎𝑔𝑒 + 𝛽9	𝑥	𝑔𝑟𝑜𝑢𝑝 +	𝛽>	𝑥	𝑔𝑒𝑛𝑑𝑒𝑟 + 	𝛽C	𝑥	 𝑔𝑟𝑜𝑢𝑝	𝑥	𝑎𝑔𝑒

+	𝛽E	𝑥	 𝑔𝑟𝑜𝑢𝑝	𝑥	𝑎𝑔𝑒 +	𝛽F	𝑥	 𝑔𝑒𝑛𝑑𝑒𝑟	𝑥	𝑎𝑔𝑒 +	𝛽G	𝑥	 𝑔𝑟𝑜𝑢𝑝	𝑥	𝑔𝑒𝑛𝑑𝑒𝑟
+ 	𝛽H	𝑥	 𝑔𝑟𝑜𝑢𝑝	𝑥	𝑎𝑔𝑒	𝑥	𝑔𝑒𝑛𝑑𝑒𝑟 + 	𝜀		

Supplementary Table 3. Statistical Models predicting average negative connectivity (Y). Model 
1. Used for the main analyses to test main effects of age, group, and gender. Model 2. Used to 
test the age by group interaction. Model 3. Omnibus model testing the influence of all 
interactions between average connectivity and demographic variables. All models included mean 
remaining FD at each scan.  
 

 
Supplementary Table 4. Group, age, and sex effects of average negative connectivity between 
task positive and task negative (default) brain systems. ROIs and network labels are defined by 
the Gordon parcellation (Gordon et al., 2014). All p-values represent the FDR corrected 
significance for each main effect in a linear mixed effects model including all three parameters 
(model 1).  
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